更小、更快、更优——这是多年来光缆的发展趋势。随着色散补偿技术的发明以及人们对提高光纤可靠性等问题的关注,“更快、更优”无疑是20世纪90年代所倡导的目标。
近年来,业界一直注重减小光纤网络的占用面积。可以说在2005年左右随着光纤供应商开发出小弯曲半径(RBR)光纤,朝着更小光缆和硬件发展的趋势就已开始出现。这些新的光波导管设计出现后不久,人们便制订了国际标准进行规范,即ITU G657。随后,由于光纤对宏观弯曲和微观弯曲的容限逐渐增大,因此这些可以“打成结”的光纤开始允许实现尺寸更小的光缆设计。
小弯曲半径光纤的宏观和微观效益
宏观弯曲是一种容易理解的简单现象。ITU G657针对宏观弯曲性能规定了特殊弯曲半径处的特殊光损耗规范。然而,有些说法认为微弯性能得到提高来自于小弯曲半径的主要特性可实现尺寸更小、性能更高的布线。用于实际分析宏弯与微弯之间差异的一种方法是,想象将一根光纤缠绕在您的手指上,测量光纤损耗(宏弯),将一张砂纸按在光纤上并测量相应的损耗(微弯损耗),然后比较两者之间的差异。
在这两种情况下,导致信号损耗的根本光学现象有着非常大的区别。当光缆暴露在低温环境中时,光缆中的材料将趋向于收缩,顺沿着光纤长度施加作用力。这种作用力会引起光缆内光纤的微弯。例如,小弯曲半径光纤的微弯容限得到提高无疑可帮助光缆承受较大的温度变化。
全球光缆制造商都在利用小弯曲半径光纤的这种特性。他们的“愿望”便是研发出可以像使用铜缆一样地使用光缆-坚固耐用、尺寸小、实用,任何人都可以轻松操作,而且不会损坏光纤。为达此目标,人们还对制造光缆过程中使用的材料进行了创新。小弯曲半径光纤的弯曲性能得到提升,促进了新材料和新制造技术在光缆制造中的使用,从而使光缆尺寸更小、重量更轻。这些难题一起解决了,便可以制造出尺寸更小、弹性更大的新一代光缆。
小半径光缆的一个主要因素是插接线和其他直连方式光缆。除了能够在相同空间中安装更多光缆这一明显的好处之外,光缆尺寸更小还可以加快空气流动,因为光缆占用的管道空间更少了。随着有源电子元件供应商尝试小型化及合并电子机柜,这种优势的重要性将会更加明显。在此类电子机柜中,热量逐渐成为一个重要问题。通常,人们会考虑铜缆沿线的气流(铜缆本身会产生热量)。但随着设备机柜变得更小、更热,气流的各个方面都变得十分重要。
更小型直连光缆和跳线的新浪潮已经开启
尺寸更小,超乎您的想象
这种现象现在可能没有那么明显,但是圆形光缆的直径每减少一个单位,光缆占用的空间(圆形的面积)会相应地减小很多。因此,光缆直径稍有减小就可能意味着占用空间大大缩小。举例来说:
因此,将典型的2.0-mm光缆与直径为1.2 mm的光缆相比较,可以清楚看出,虽然光缆直径并没有减小一半,但在相同空间(1平方英寸)内可安装的推荐光缆数量几乎是原来的3倍之多!
为了更直观地说明,以一捆含有24根跳线的光缆为例。我们可以看到,以下就是两者的差异:
1.2-mm和2.0-mm捆扎光缆的尺寸对比
在上图中,您可以看到,在直径为1.2-mm的光缆示例中,相同数量的光纤占用的空间要小得多。同样,即使将直径为1.6-mm的光缆与直径为1.2-mm的光缆进行对比,相同空间中可安装的光缆数量也超过了两倍!
同时更强韧
大家下一个可能会问到的问题是关于更小尺寸光缆的长度。在21世纪前十年的后期,Telcordia针对广泛使用的GR-409直连光缆标准发布了修订版2。修订版2中包括名为“小型”光缆的子分类,允许按照GR-409标准生产强度更低的光缆。修订版2降低了对所谓的小封装安装抗拉强度的规定,允许光缆承受9磅(40N)的安装负载,而不是22磅(100N)的标准安装负载。当时,人们普遍认为降低强度是生产尺寸越来越小的光缆所必需的。与额定负载为22磅的光缆相比,额定抗拉负载为9磅的光缆需要安装人员更加谨慎小心,以免光缆损坏。
但是,目前一些以小弯曲半径光缆为基础的线缆实际上使用的材料/设计/方法会使光缆尺寸更小,超出GR-409中规定的原始22磅抗拉安装负载。
例如,1.2-mm直连光缆现已上市,可支持30磅的额定安装负载。与额定小型的2.0-mm光缆相比,这意味着直径为1.2-mm的新型光缆的强度是其3倍,并且只会占用三分之一的空间。
因此,不久之后,数据中心管理者和其他人员将能够安装尺寸比以往小很多的光缆,同时不会被动地选择GR-409的小封装,从而不会降低光缆强度。收到GR-409光缆的报价单时应多加留意,以确保您了解将购买的光缆规格。许多人都不了解这种区别。
您接下来会问什么问题?如果光缆尺寸可以减小,那么硬件尺寸也可以减小。期待在不久的将来,我们可以看到比任何时候具有更小尺寸的硬件,这样就可以实现密度更高、更加紧凑的布线管理,同时保证网络的可靠性。